Journal of Statistical Software

May 2005, Volume 14, Issue 6. http:/ /www.jstatsoft.org/

zoo: S3 Infrastructure for Regular and Irregular
Time Series

Achim Zeileis Gabor Grothendieck
Wirtschaftsuniversitat Wien GKX Associates Inc.

Abstract

zoo is an R package providing an S3 class with methods for indexed totally ordered
observations, such as discrete irregular time series. Its key design goals are independence
of a particular index/time/date class and consistency with base R and the "ts" class for
regular time series. This paper describes how these are achieved within zoo and provides
several illustrations of the available methods for "zoo" objects which include plotting,
merging and binding, several mathematical operations, extracting and replacing data and
index, coercion and NA handling. A subclass "zooreg" embeds regular time series into
the "zoo" framework and thus bridges the gap between regular and irregular time series
classes in R.

Keywords: totally ordered observations, irregular time series, regular time series, S3, R.

1. Introduction

The R system for statistical computing (R Development Core Team 2005, http://www.
R-project.org/) ships with a class for regularly spaced time series, "ts" in package stats,
but has no native class for irregularly spaced time series. With the increased interest in com-
putational finance with R over the last years several implementations of classes for irregular
time series emerged which are aimed particularly at finance applications. These include the
S3 classes "timeSeries" in package fCalendar from the Rmetrics bundle (Wuertz 2005) and
"irts" in package tseries (Trapletti 2005) and the S4 class "its" in package its (Heywood
2004). With these packages available, why would anybody want yet another package provid-
ing infrastructure for irregular time series? The above mentioned implementations have in
common that they are restricted to a particular class for the time scale: the former imple-
mentation comes with its own time class "timeDate" built on top of the "POSIXt" classes
available in base R whereas the latter two use "POSIXct" directly. And this was the starting
point for the zoo project: the first author of the present paper needed more general support

http://www.jstatsoft.org/
http://www.R-project.org/
http://www.R-project.org/

2 zoo: S3 Infrastructure for Regular and Irregular Time Series

for ordered observations, independent of a particular index class, for the package strucchange
(Zeileis, Leisch, Hornik, and Kleiber 2002). Hence, the package was called zoo which stands
for Z’s ordered observations. Since the first release, a major part of the additions to zoo
were provided by the second author of this paper, so that the name of the package does not
really reflect the authorship anymore. Nevertheless, independence of a particular index class
remained the most important design goal. While the package evolved to its current status, a
second key design goal became more and more clear: to provide methods to standard generic
functions for the "zoo" class that are similar to those for the "ts" class (and base R in
general) such that the usage of zoo is very intuitive because few additional commands have
to be learned. This paper describes how these design goals are implemented in zoo. The
resulting package provides the "zoo" class which offers an extensive (and still growing) set of
standard and new methods for working with indexed observations and ‘talks’ to the classes
"ts", "its", "irts" and "timeSeries". It also bridges the gap between regular and irreg-
ular time series by providing coercion with (virtually) no loss of information between "ts"
and "zoo". With these tools zoo provides the basic infrastructure for working with indexed
totally ordered observations and the package can be either employed by users directly or can
be a basic ingredient on top of which other more specialized applications can be built.

The remainder of the paper is organized as follows: Section 2 explains how "zoo" objects
are created and illustrates how the corresponding methods for plotting, merging and binding,
several mathematical operations, extracting and replacing data and index, coercion and NA
handling can be used. Section 3 outlines how other packages can build on this basic infras-
tructure. Section 4 gives a few summarizing remarks and an outlook on future developments.
Finally, an appendix provides a reference card that gives an overview of the functionality
contained in zoo.

2. The class "zoo" and its methods

This section describes how "zoo" series can be created and subsequently manipulated, visual-
ized, combined or coerced to other classes. In Section 2.1, the general class "zoo" for totally
ordered series is described. Subsequently, in Section 2.2, the subclass "zooreg" for regular
"zoo" series, i.e., series which have an index with a specified frequency, is discussed. The
methods illustrated in the remainder of the section are mostly the same for both "zoo" and
"zooreg" objects and hence do not have to be discussed separately. The few differences in
merging and binding are briefly highlighted in Section 2.4.

2.1. Creation of "zoo" objects

The simple idea for the creation of "zoo" objects is to have some vector or matrix of obser-
vations x which are totally ordered by some index vector. In time series applications, this
index is a measure of time but every other numeric, character or even more abstract vector
that provides a total ordering of the observations is also suitable. Objects of class "zoo" are
created by the function

zoo(x, order.by)

where x is the vector or matrix of observations' and order.by is the index by which the

'In principle, more general objects can be indexed, but currently zoo does not support this. Development

Journal of Statistical Software

observations should be ordered. It has to be of the same length as NROW(x), i.e., either the
same length as x for vectors or the same number of rows for matrices.? The "zoo" object
created is essentially the vector/matrix as before but has an additional "index" attribute
in which the index is stored.> Both the observations in the vector/matrix x and the index
order.by can, in principle, be of arbitrary classes. However, most of the following methods
(plotting, aggregating, mathematical operations) for "zoo" objects are typically only useful
for numeric observations x. Special effort in the design was put into independence from a
particular class for the index vector. In zoo, it is assumed that combination c(), querying
the length (), value matching MATCH(), subsetting [,, and, of course, ordering ORDER () work
when applied to the index. In addition, an as.character() method might improve printed
output* and as.numeric() could be used for computing distances between indexes, e.g., in
interpolation. Both methods are not necessary for working with "zoo" objects but could be
used if available. All these methods are available, e.g., for standard numeric and character
vectors and for vectors of classes "Date", "POSIXct" or "times" from package chron, but not
for the class "dateTime" in fCalendar. In the last case, the solution is to provide methods
for the above mentioned functions so that indexing "zoo" objects with "dateTime" vectors
works (see Section 3.3 for an example). To achieve this independence of the index class, new
generic functions for ordering (ORDER()) and value matching (MATCH()) are introduced as the
corresponding base functions order () and match() are non-generic. The default methods
simply call the corresponding base functions, i.e., no new method needs to be introduced for
a particular index class if the non-generic functions order () and match() work for this class.

To illustrate the usage of zoo (), we first load the package and set the random seed to make
the examples in this paper exactly reproducible.

R> library(zoo)
R> set.seed(1071)

Then, we create two vectors z1 and z2 with "POSIXct" indexes, one with random observations

R> z1.index <- ISOdatetime (2004, rep(1:2, 5), sample(28, 10), O,
+ 0, 0)

R> z1.data <- rnorm(10)

R> z1 <- zoo(zl.data, zl.index)

and one with a sine wave

R> z2.index <- as.POSIXct(paste(2004, rep(1:2, 5), sample(1:28,
+ 10), sep = "-"))

R> z2.data <- sin(2 * 1:10/pi)

R> z2 <- zoo(z2.data, z2.index)

plans are that zoo should eventually support indexed factors, data frames and lists.

2The only case where this restriction is not imposed is for zero-length vectors, i.e., vectors that only have
an index but no data.

3There is some limited support for indexed factors available in which case the "zoo" object also has an
attribute "oclass" with the original class of x. This feature is still under development and might change in
future versions.

4If an as.character() method is already defined, but gives not the desired output for printing, then an
index2char () method can be defined. This is a generic convenience function used for creating character
representations of the index vector and it defaults to using as.character().

4 zoo: S3 Infrastructure for Regular and Irregular Time Series

Furthermore, we create a matrix Z with random observations and a "Date" index

R> Z.index <- as.Date(sample(12450:12500, 10))
R> Z.data <- matrix(rnorm(30), ncol = 3)

R> colnames(Z.data) <- c("4a", "Bb", "Cc")

R> Z <- zoo(Z.data, Z.index)

In the examples above, the generation of indexes looks a bit awkward due to the fact the
indexes need to be randomly generated (and there are no special functions for random indexes
because these are rarely needed in practice). In “real world” applications, the indexes are
typically part of the raw data set read into R so the code would be even simpler. See Section 3
for such examples.’

Methods to several standard generic functions are available for "zoo" objects, such as print,
summary, str, head, tail and [(subsetting), a few of which are illustrated in the following.

There are three printing code styles for "zoo" objects: vectors are by default printed in
"horizontal" style

R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07
0.74675994 0.02107873 -0.29823529 0.68625772 1.94078850 1.27384445
2004-02-12 2004-02-16 2004-02-20 2004-02-24
0.22170438 -2.07607585 -1.78439244 -0.19533304

R> z1[3:7]

2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
-0.2982363 0.6862577 1.9407885 1.2738445 0.2217044

and matrices in "vertical" style
R> Z
Aa Bb Cc

2004-02-02 1.25543390 0.68157316 -0.63292049
2004-02-08 -1.49458326 .32341223 -1.49442269

[

2004-02-09 -1.87462247 -0.87329289 0.62733971
2004-02-21 -0.14538608 0.45234903 -0.14597401
2004-02-22 0.22542418 0.53838938 0.23136133
2004-02-29 1.20695518 0.31814222 -0.01129202
2004-03-05 -1.20861025 1.42379785 -0.81614483
2004-03-10 -0.11039563 1.34774254 0.95522468

2004-03-14 0.84202385 -2.73842019 0.23150695
2004-03-20 -0.19019104 0.12308872 -1.51862157

5Note, that in the code above a new as.Date method, provided in zoo, is used to convert days since
1970-01-01 to class "Date". See the respective help page for more details.

Journal of Statistical Software

R> Z[1:3, 2:3]

Bb Cc
2004-02-02 0.6815732 -0.6329205
2004-02-08 1.3234122 -1.4944227
2004-02-09 -0.8732929 0.6273397

Additionally, there is a "plain" style which simply first prints the data and then the index.

Above, we have illustrated that "zoo" series can be indexed like vectors or matrices respec-
tively, i.e., with integers correponding to their observation number (and column number).
But for indexed observations, one would obviously also like to be able to index with the index
class. This is also available in [which only uses vector/matrix-type subsetting if its first
argument is of class "numeric", "integer" or "logical".

R> z1[ISOdatetime (2004, 1, c(14, 25), 0, 0, 0)]

2004-01-14 2004-01-25
0.02107873 0.68625772

If the index class happens to be "numeric", the index has to be either insulated in I() like
z[I(i)] or the window() method can be used (see Section 2.6).

Summaries and most other methods for "zoo" objects are carried out column wise, reflecting
the rectangular structure. In addition, a summary of the index is provided.

R> summary(z1)

Index zl

Min. :2004-01-05 00:00:00 Min. :=2.07608

1st Qu.:2004-01-20 12:00:00 1st Qu.:-0.27251

Median :2004-02-01 12:00:00 Median : 0.12139

Mean :2004-02-01 09:36:00 Mean : 0.05364

3rd Qu.:2004-02-15 00:00:00 3rd Qu.: 0.73163

Max. :2004-02-24 00:00:00 Max. 1.94079

R> summary(Z)
Index Aa Bb Cc

Min. :2004-02-02 Min. :-1.8746 Min. :-2.7384 Min. :-1.51862

1st Qu.:2004-02-12 1st Qu.:-0.9540 1st Qu.: 0.1719 1st Qu.:-0.77034
Median :2004-02-25 Median :-0.1279 Median : 0.4954 Median :-0.07863
Mean :2004-02-25 Mean :-0.1494 Mean : 0.2597 Mean :-0.25739
3rd Qu.:2004-03-08 3rd Qu.: 0.6879 3rd Qu.: 1.1630 3rd Qu.: 0.23147
Max. :2004-03-20 Max. : 1.2654 Max. : 1.4238 Max. : 0.95522

6 zoo: S3 Infrastructure for Regular and Irregular Time Series

2.2. Creation of "zooreg" objects

Strictly regular series are such series of observations where the distances between the indexes
of every two adjacent observations are the same (i.e., in time series applications, the time dif-
ferences are identical). Such series can also be described by their frequency, i.e., the reciprocal
value of the distance between two observations. As "zoo" can be used to store series with
arbitrary type of index, it can, of course, also be used to store series with regular indexes.
So why should this case be given special attention, in particular as there is already the "ts"
class devoted entirely to regular series? There are two reasons: First, to be able to convert
back and forth between "ts" and "zoo", the frequency of a certain series needs to be stored
on the "zoo" side. Second, "ts" is limited to strictly regular series and the regularity is lost if
some internal observations are omitted. Series that can be created by omitting some internal
observations from strictly regular series will in the following be refered to as being (weakly)
regular. Therefore, a class that bridges the gap between irregular and strictly regular series
is needed and "zooreg" fills this gap. Objects of class "zooreg" inherit from class "zoo"
but have an additional attribute "frequency" in which the frequency of the series is stored.
Therefore, they can be employed to represent both strictly and weakly regular series.

To create a "zooreg" object, either the command zoo() can be used or the command
zooreg().

zoo (x, order.by, frequency)
zooreg(data, start, end, frequency, deltat, ts.eps, order.by)

If zoo() is called as in the previous section but with an additional frequency argument,
it is checked whether frequency complies with the index order.by: if it does an object of
class "zooreg" inheriting from "zoo" is returned. The command zooreg() takes mostly the
same arguments as ts().% In both cases, the index class is more restricted than in the plain
"zoo" case. The index must be of a class which can be coerced to "numeric" (for checking
its regularity) and when converted to numeric the index must be expressable as multiples of
1/frequency. Furthermore, adding/substracting a numeric to/from an observation of the index
class, should return the correct value of the index class again, i.e., group generic functions
Ops should be defined.”

The following calls yield equivalent series

R> zr1 <- zooreg(sin(1:9), start = 2000, frequency = 4)
R> zr2 <- zoo(sin(1:9), seq(2000, 2002, by = 1/4), 4)
R> zrl

2000(1) 2000(2) 2000(3) 2000(4) 2001 (1) 2001(2) 2001(3)
0.8414710 0.9092974 0.1411200 -0.7568025 -0.9589243 -0.2794155 0.6569866
2001(4) 2002(1)
0.9893582 0.4121185

R> zr2

50nly if order.by is specified in the zooreg() call, then zoo(x, order.by, frequency) is called.
"An application of non-numeric indexes for regular series are the classes "yearmon" and "yearqtr" which
are designed for monthly and quarterly series respectively and are discussed in Section 3.4.

Journal of Statistical Software

2000(1) 2000(2) 2000(3) 2000(4) 2001 (1) 2001(2) 2001(3)
0.8414710 0.9092974 0.1411200 -0.7568025 -0.9589243 -0.2794155 0.6569866
2001 (4) 2002(1)
0.9893582 0.4121185

to which methods to standard generic functions for regular series can be applied, such as
frequency, deltat, cycle.
As stated above, the advantage of "zooreg" series is that they remain regular even if an

internal observation is dropped:

R> zrl <- zri[-c(3, 5)]
R> zr1

2000(1) 2000(2) 2000(4) 2001(2) 2001(3) 2001 (4) 2002(1)
0.8414710 0.9092974 -0.7568025 -0.2794155 0.6569866 0.9893582 0.4121185

R> class(zri)

[1] "zooreg" "zoo"

R> frequency(zrl)

[1] 4

This facilitates NA handling significantly compared to "ts" and makes "zooreg" a much more
attractive data type, e.g., for time series regression.

zooreg() can also deal with non-numeric indexes provided that adding "numeric" observa-
tions to the index class preserves the class and does not coerce to "numeric".

R> zooreg(1:5, start = as.Date("2005-01-01"))

2005-01-01 2005-01-02 2005-01-03 2005-01-04 2005-01-05
1 2 3 4 5

To check whether a certain series is (strictly) regular, the new generic function is.regular(x,
strict = FALSE) can be used:

R> is.regular(zri)
(1] TRUE
R> is.regular(zrl, strict = TRUE)

[1] FALSE

8 zoo: S3 Infrastructure for Regular and Irregular Time Series

This function (and also the frequency, deltat and cycle) also work for "zoo" objects if the
regularity can still be inferred from the data:

R> zrl <- as.zoo(zrl)
R> zri1

2000 2000.25 2000.75 2001.25 2001.5 2001.75 2002
0.8414710 0.9092974 -0.7568025 -0.2794155 0.6569866 0.9893582 0.4121185

R> class(zrl)

[1] "zoo"

R> is.regular(zril)
[1] TRUE

R> frequency(zrl)
[1] 4

Of course, inferring the underlying regularity is not always reliable and it is safer to store a
regular series as a "zooreg" object if it is intended to be a regular series.

If a weakly regular series is coerced to "ts" the missing observations are filled with NAs (see
also Section 2.8). For strictly regular series with numeric index, the class can be switched
between "zoo" and "ts" without loss of information.

R> as.ts(zr1)

Qtri Qtr2 Qtr3 Qtr4
2000 0.8414710 0.9092974 NA -0.7568025
2001 NA -0.2794155 0.6569866 0.9893582

2002 0.4121185
R> identical(zr2, as.zoo(as.ts(zr2)))
[1] TRUE

This enables direct use of functions such as acf, arima, stl etc. on "zooreg" objects as these
methods coerce to "ts" first. The result only has to be coerced back to "zoo", if appropriate.

2.3. Plotting

The plot method for "zoo" objects, in particular for multivariate "zoo" series, is based on
the corresponding method for (multivariate) regular time series. It relies on plot and lines
methods being available for the index class which can plot the index against the observations.

By default the plot method creates a panel for each series

Journal of Statistical Software 9

R> plot(Z)
but can also display all series in a single panel
R> plot(Z, plot.type = "single", col = 2:4)

In both cases additional graphical parameters like color col, plotting character pch and line
type 1ty can be expanded to the number of series. But the plot method for "zoo" objects
offers some more flexibility in specification of graphical parameters as in

R> plot(Z, type = "b", 1ty = 1:3, pch = list(da = 1:5, Bb = 2, Cc = 4),
+ col = 1list(Bb = 2, 4))

The argument 1ty behaves as before and sets every series in another line type. The pch
argument is a named list that assigns to each series a different vector of plotting characters
each of which is expanded to the number of observations. Such a list does not necessarily
have to include the names of all series, but can also specify a subset. For the remaining series
the default parameter is then used which can again be changed: e.g., in the above example
the col argument is set to display the series "Bb" in red and all remaining series in blue.
The results of the multiple panel plots are depicted in Figure 2 and the single panel plot in
Figure 1.

2.4. Merging and binding

As for many rectangular data formats in R, there are both methods for combining the rows
and columns of "zoo" objects respectively. For the rbind method the number of columns of
the combined objects has to be identical and the indexes may not overlap.

I I I I I
Feb 02 Feb 12 Feb 22 Mar 03 Mar 13

Index

Figure 1: Example of a single panel plot

10

Aa

Bb

Cc

Aa

Bb

Cc

0.5

0.5

-2 -1 -15

-0.5 0.5

-1.5

0.5

-15

-0.5 0.5 -2 -1

-1.5

zoo: S3 Infrastructure for Regular and Irregular Time Series

T T T T T
Feb 02 Feb 12 Feb 22 Mar 03 Mar 13
Index
o
/ x
& / \
,
X /+ >
/ .
A
N
+
A----A
_ =" P \
a- \ Y- P \
\ _-" 4 TTa \ A
\ --" \ ’
. _-" \ Vi
A~ \ /
\ //
\ 7
\ 7/
N/
.x«
X. :
: X X
X, s
: X
X X
T T T T T
Feb 02 Feb 12 Feb 22 Mar 03 Mar 13
Index

Figure 2: Examples of multiple panel plots

Journal of Statistical Software 11

R> rbind(z1[5:10], =z1[2:3])

2004-01-14 2004-01-19
0.02107873 -0.29823529
2004-02-20 2004-02-24
-1.78439244 -0.19533304

2004-01-27 2004-02-07 2004-02-12 2004-02-16
1.94078850 1.27384445 0.22170438 -2.07607585

The ¢ method simply calls rbind and hence behaves in the same way.

The cbind method by default combines the columns by the union of the indexes and fills the
created gaps by NAs.

R> cbind(z1, z2)

2004-01-03
2004-01-05
2004-01-14
2004-01-17
2004-01-19
2004-01-24
2004-01-25
2004-01-27
2004-02-07
2004-02-08
2004-02-12
2004-02-13
2004-02-16
2004-02-20
2004-02-24
2004-02-25
2004-02-26

z1

NA

. 74675994
.02107873

NA

.29823529

NA

0.68625772

.94078850
.27384445

NA

.22170438

NA

.07607585
. 78439244
.195633304

NA
NA

.94306673
.04149429
NA
.59448077
.52575918
.96739776
NA
NA
NA
.95605566
.62733473
.92845336
NA
NA
NA
.56060280
.08291711

In fact, the cbind method is synonymous with the merge method® except that the latter
provides additional arguments which allow for combining the columns by the intersection of
the indexes using the argument all = FALSE

R> merge(zl, z2, all = FALSE)

z1

2004-01-05 0.74675994
2004-01-19 -0.29823529
2004-02-12 0.22170438

z2
-0
-0
-0

.04149429
.52575918
.62733473

8Note, that in some situations the column naming in the resulting object is somewhat problematic in the
cbind method and the merge method might provide better formatting of the column names.

12 zoo: S3 Infrastructure for Regular and Irregular Time Series

Additionally, the filling pattern can be changed in merge, the naming of the columns can be
modified and the return class of the result can be specified. In the case of merging of objects
with different index classes, R gives a warning and tries to coerce the indexes. Merging
objects with different index classes is generally discouraged—if it is used nevertheless, it is
the responsibility of the user to ensure that the result is as intended. If at least one of the
merged /binded objects was a "zooreg" object, then merge tries to return a "zooreg" object.
This is done by assessing whether there is a common maximal frequency and by checking
whether the resulting index is still (weakly) regular.

If non-"zoo" objects are included in merging, then merge gives plain vectors/factors/matrices
the index of the first argument (if it is of the same length). Scalars are always added for the
full index without missing values.

R> merge(zl, pi, 1:10)

zl pi 1:10
2004-01-05 0.74675994 3.14159265 1.00000000
2004-01-14 0.02107873 3.14159265 2.00000000
2004-01-19 -0.29823529 3.14159265 3.00000000
2004-01-25 0.68625772 3.14159265 4.00000000
2004-01-27 1.94078850 3.14159265 5.00000000
2004-02-07 1.27384445 3.14159265 6.00000000
2004-02-12 0.22170438 3.14159265 7.00000000
2004-02-16 -2.07607585 3.14159265 8.00000000
2004-02-20 -1.78439244 3.14159265 9.00000000
2004-02-24 -0.19533304 3.14159265 10.00000000

Another function which performs operations along a subset of indexes is aggregate, which is
discussed in this section although it does not combine several objects. Using the aggregate
method, "zoo" objects are split into subsets along a coarser index grid, summary statistics
are computed for each and then the reduced object is returned. In the following example,
first a function is set up which returns for a given "Date" value the corresponding first of the
month. This function is then used to compute the coarser grid for the aggregate call: in
the first example, the grouping is computed explicitely by firstofmonth(index(Z)) and the
mean of the observations in the month is returned—in the second example, only the function
that computes the grouping (when applied to index(Z)) is supplied and the first observation
is used for aggregation.

R> firstofmonth <- function(x) as.Date(sub("..$", "01", format(x)))
R> aggregate(Z, firstofmonth(index(Z)), mean)

Aa Bb Cc
2004-02-01 -0.13779642 0.40676219 -0.23765136
2004-03-01 -0.16679327 0.03905223 -0.28700869

R> aggregate(Z, firstofmonth, head, 1)

Journal of Statistical Software

Aa Bb Cc
2004-02-01 1.2554339 0.6815732 -0.6329205
2004-03-01 -1.2086102 1.4237978 -0.8161448

2.5. Mathematical operations

To allow for standard mathematical operations among "zoo" objects, zoo extends group
generic functions Ops. These perform the operations only for the intersection of the indexes®
of the objects. As an example, the summation and logical comparison with < of z1 and z2
yield

R> z1 + z2

2004-01-05 2004-01-19 2004-02-12
0.7052657 -0.8239945 -0.4056304

R> z1 < z2

2004-01-05 2004-01-19 2004-02-12
FALSE FALSE FALSE

Additionally, methods for transposing t of "zoo" objects—which coerces to a matrix before—
and computing cumulative quantities such as cumsum, cumprod, cummin, cummax which are all
applied column wise.

R> cumsum(Z)

Aa
2004-02-02 1.2554339
2004-02-08 -0.2391494
2004-02-09 -2.1137718
2004-02-21 -2.2591579
2004-02-22 -2.0337337
2004-02-29 -0.8267785
2004-03-05 -2.0353888
2004-03-10 -2.1457844
2004-03-14 -1.3037606
2004-03-20 -1.4939516

o
o
Q
le)

.6815732 -0.6329205
.0049854 -2.1273432
.1316925 -1.5000035
.5840415 -1.6459775
.1224309 -1.4146162
.4405731 -1.4259082
.8643710 -2.2420530
.2121135 -1.2868283
.4736933 -1.05563214
.5967820 -2.5739429

NN OO WNDNNEFE P DNO

2.6. Extracting and replacing the data and the index

zoo provides several generic functions and methods to work on the data contained in a "zoo"
object, the index (or time) attribute associated to it, and on both data and index.

9The Ops operations always work on pairs of observations which are only available for the intersection of
the indexes. If operations were performed on the union of the indexes, this would artificially create NAs in the
result.

13

14 zoo: S3 Infrastructure for Regular and Irregular Time Series

The data stored in "zoo" objects can be extracted by coredata which strips off all "zoo"-
specific attributes and it can be replaced using coredata<-. Both are new generic functions'”
with methods for "zoo" objects as illustrated in the following example.

R> coredata(z1)

[1] 0.74675994 0.02107873 -0.29823529 0.68625772 1.94078850 1.27384445
[7] 0.22170438 -2.07607585 -1.78439244 -0.19533304

R> coredata(z1l) <- 1:10
R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

1 2 3 4 5 6 7
2004-02-16 2004-02-20 2004-02-24
8 9 10

The index associated with a "zoo" object can be extracted by index and modified by index<-.
As the interpretation of the index as “time” in time series applications is natural, there are
also synonymous methods time and time<-. Hence, the commands index(z2) and time (z2)
return equivalent results.

R> index(z2)

[1] "2004-01-03 CET" "2004-01-05 CET" "2004-01-17 CET" "2004-01-19 CET"
[6] "2004-01-24 CET" "2004-02-08 CET" "2004-02-12 CET" "2004-02-13 CET"
[9] "2004-02-25 CET" "2004-02-26 CET"

The index scale of z2 can be changed to that of z1 by

R> index(z2) <- index(z1)
R> z2

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07
0.94306673 -0.04149429 0.59448077 -0.52575918 -0.96739776 0.95605566
2004-02-12 2004-02-16 2004-02-20 2004-02-24
-0.62733473 -0.92845336 0.56060280 0.08291711

The start and the end of the index/time vector can be queried by start and end:

R> start(z1)

[1] "2004-01-05 CET"

0The coredata functionality is similar in spirit to the core function in its and value in tseries. However, the
focus of those functions is somewhat narrower and we try to provide more general purpose generic functions.
See the respective manual page for more details.

Journal of Statistical Software 15

R> end(z1)
[1] "2004-02-24 CET"

To work on both data and index/time, zoo provides window and window<- methods for "zoo"
objects. In both cases the window is specified by

window(x, index, start, end)

where x is the "zoo" object, index is a set of indexes to be selected (by default the full index
of x) and start and end can be used to restrict the index set.

R> window(Z, start = as.Date("2004-03-01"))

Aa Bb Cc
2004-03-05 -1.2086102 1.4237978 -0.8161448
2004-03-10 -0.1103956 1.3477425 0.9552247
2004-03-14 0.8420238 -2.7384202 0.2315069
2004-03-20 -0.1901910 0.1230887 -1.5186216

R> window(Z, index = index(Z)[5:8], end = as.Date("2004-03-01"))

Aa Bb Cc
2004-02-22 0.22542418 0.53838938 0.23136133
2004-02-29 1.20695518 0.31814222 -0.01129202

The first example selects all observations starting from 2004-03-01 whereas the second selects
from the from the 5th to 8th observation those up to 2004-03-01.

The same syntax can be used for the corresponding replacement function.

R> window(zl, end = as.P0SIXct("2004-02-01")) <- 9:5
R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

9 8 7 6 5 6 7
2004-02-16 2004-02-20 2004-02-24
8 9 10

Two methods that are standard in time series applications are lag and diff. These are
available with the same arguments as the "ts" methods.!!

R> lag(z1l, k = -1)

14iff also has an additional argument that also allows for geometric and not only allows arithmetic dif-
ferences. Furthermore, note the sign of the lag in lag: by default it is positive and shifts the observations
forward, to obtain the more standard backward shift the lag has to be negative.

16 zoo: S3 Infrastructure for Regular and Irregular Time Series

2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12 2004-02-16

9 8 7 6 5 6 7
2004-02-20 2004-02-24
8 9

R> merge(zl, lag(zl, k = 1))

z1 lag(zl, k = 1)
2004-01-05 9 8

2004-01-14 8 7
2004-01-19 7 6
2004-01-256 6 5
2004-01-27 5 6
2004-02-07 6 7
2004-02-12 7 8
2004-02-16 8 9

2004-02-20 9 10
2004-02-24 10 NA

R> diff(z1)

2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12 2004-02-16

-1 -1 -1 -1 1 1 1
2004-02-20 2004-02-24
1 1

2.7. Coercion to and from "zoo"

Coercion to and from "zoo" objects is available for objects of various classes, in particular
"ts", "irts" and "its" objects can be coerced to "zoo" and back if the index is of the
appropriate class.!?

Coercion between "zooreg" and "zoo" is also available and is essentially dropping the "fre-
quency" attribute or trying to add one, respectively.

Furthermore, "zoo" objects can be coerced to vectors, matrices, lists and data frames (the
latter dropping the index/time attribute). A simple example is

R> as.data.frame(Z)

Aa Bb Cc

2004-02-02
2004-02-08
2004-02-09
2004-02-21
2004-02-22

1.2554339
-1.4945833
-1.8746225
-0.1453861

0.2254242

0.6815732 -0.63292049
1.3234122 -1.49442269
-0.8732929 0.62733971
0.4523490 -0.14597401
0.5383894 0.23136133

12Coercion from "zoo" to "irts" is contained in the tseries package.

Journal of Statistical Software

2004-02-29 1.2069552 0.3181422 -0.01129202
2004-03-05 -1.2086102 1.4237978 -0.81614483
2004-03-10 -0.1103956 1.3477425 0.95522468
2004-03-14 0.8420238 -2.7384202 0.23150695
2004-03-20 -0.1901910 0.1230887 -1.51862157

2.8. NA handling

Four methods for dealing with NAs (missing observations) in the observations are applicable to
"zoo" objects: na.omit, na.contiguous, na.approx and na.locf. na.omit—or its default
method to be more precise—returns a "zoo" object with incomplete observations removed.
na.contiguous extracts the longest consecutive stretch of non-missing values. Furthermore,
new generic functions na.approx and na.locf and corresponding default methods are intro-
duced in zoo. The former replaces NAs by linear interpolation (using the function approx)
and the name of the latter stands for last observation carried forward. It replaces missing
observations by the most recent non-NA prior to it. Leading NAs, which cannot be replaced
by previous observations, are removed in both functions by default.

R> z1[sample(1:10, 3)] <- NA
R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

9 NA 7 6 5 6 NA
2004-02-16 2004-02-20 2004-02-24
8 9 NA

R> na.omit(z1)

2004-01-05 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-16 2004-02-20
9 7 6 5 6 8 9

R> na.contiguous(z1)

2004-01-19 2004-01-25 2004-01-27 2004-02-07
7 6 5 6

R> na.approx(z1)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9.000000 7.714286 7.000000 6.000000 5.000000 6€6.000000 7.111111
2004-02-16 2004-02-20
8.000000 9.000000

R> na.approx(z1l, 1:NROW(z1))

17

18 zoo: S3 Infrastructure for Regular and Irregular Time Series

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

9 8 7 6 5 6 7
2004-02-16 2004-02-20
8 9

R> na.locf(z1)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12

9 9 7 6 5 6 6
2004-02-16 2004-02-20 2004-02-24
8 9 9

As the above example illustrates, na.approx uses by default the underlying time scale for
interpolation. This can be changed, e.g., to an equidistant spacing, by setting the second
argument of na.approx.

2.9. Rolling functions

A typical task to be performed on ordered observations is to evaluate some function, e.g., com-
puting the mean, in a window of observations that is moved over the full sample period. The
resulting statistics are usually synonymously referred to as rolling/running/moving statistics.
In zoo, the generic function rapply is provided along with a "zoo" and a "ts" method. The
most important arguments are

rapply(data, width, FUN)

where the function FUN is applied to a rolling window of size width of the observations data.
The function rapply currently only evaluates the function for windows of full size width,
hence the result has width - 1 fewer observations than the original series. But it can be
determined whether the ‘lost’ observations should be padded with NAs and whether the result
should be left- or right-aligned or centered (default) with respect to the original index.

R> rapply(Z, 5, sd)

Aa Bb Cc
2004-02-09 1.2814876 0.8018950 0.8218959
2004-02-21 1.2658555 0.7891358 0.8025043
2004-02-22 1.2102011 0.8206819 0.5319727
2004-02-29 0.8662296 0.5266261 0.6411751
2004-03-05 0.9363400 1.7011273 0.6356144
2004-03-10 0.9508642 1.6892246 0.9578196

R> rapply(Z, 5, sd, na.pad = TRUE, align = "left")

Aa Bb Cc
2004-02-02 1.2814876 0.8018950 0.8218959

Journal of Statistical Software

2004-02-08 1.2658555 0.7891358 0.8025043
2004-02-09 1.2102011 0.8206819 0.5319727
2004-02-21 0.8662296 0.5266261 0.6411751
2004-02-22 0.9363400 1.7011273 0.6356144
2004-02-29 0.9508642 1.6892246 0.9578196

2004-03-05 NA NA NA
2004-03-10 NA NA NA
2004-03-14 NA NA NA
2004-03-20 NA NA NA

To improve the performance of rapply(x, k, foo) for some frequently used functions foo,
more efficient implementations rollfoo(x, k) are available (and also called by rapply).
Currently, these are the generic functions rollmean, rollmedian and rollmax which have
methods for "zoo" and "ts" series and a default method for plain vectors.

R> rollmean(z2, 5, na.pad = TRUE)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27

NA NA 0.0005792538 0.0031770388 -0.1139910497
2004-02-07 2004-02-12 2004-02-16 2004-02-20 2004-02-24
-0.4185778750 -0.2013054791 0.0087574946 NA NA

3. Combining zoo with other packages

The main purpose of the package zoo is to provide basic infrastructure for working with
indexed totally ordered observations that can be either employed by users directly or can be
a basic ingredient on top of which other packages can build. The latter is illustrated with a
few brief examples involving the packages strucchange, tseries and fCalendar in this section.
Finally, the classes "yearmon" and "yearqtr" (provided in zoo) are used for illustrating how
zoo can be extended by creating a new index class.

3.1. strucchange: Empirical fluctuation processes

The package strucchange provides a collection of methods for testing, monitoring and dating
structural changes, in particular in linear regression models. Tests for structural change assess
whether the parameters of a model remain constant over an ordering with respect to a specified
variable, usually time. To adequately store and visualize empirical fluctuation processes
which capture instabilities over this ordering, a data type for indexed ordered observations is
required. This was the motivation for starting the zoo project.

A simple example for the need of "zoo" objects in strucchange which can not be (easily)
implemented by other irregular time series classes available in R is described in the following.
We assess the constancy of the electrical resistance over the apparent juice content of kiwi
fruits.!® The data set fruitohms is contained in the DAAG package (Maindonald and Braun

1A different approach would be to test whether the slope of a regression of electrical resistance on juice
content changes with increasing juice content, i.e., to test for instabilities in ohms ~ juice instead of ohms ~
1. Both lead to similar results.

19

20 zoo: S3 Infrastructure for Regular and Irregular Time Series

2004). The fitted ocus object contains the OLS-based CUSUM process for the mean of the
electrical resistance (variable ohms) indexed by the juice content (variable juice).

R> library(strucchange)
R> library(DAAG)

R> data(fruitohms)
R> ocus <- gefp(ohms ~ 1, order.by = ~juice, data = fruitohms)

R> plot(ocus)

M-fluctuation test

[}

(%]

3]

s ¥ 7

o

c

Qo M T

IS

2

R

<

3 —

o

IS /K \

() o
| | | | | |
10 20 30 40 50 60

juice

Figure 3: Empirical M-fluctuation process for fruitohms data

This OLS-based CUSUM process can be visualized using the plot method for "gefp" objects
which builds on the "zoo" method and yields in this case the plot in Figure 3 showing the
process which crosses its 5% critical value and thus signals a significant decrease in the mean
electrical resistance over the juice content. For more information on the package strucchange
and the function gefp see Zeileis et al. (2002) and Zeileis (2004).

3.2. tseries: Historical financial data

A typical application for irregular time series which became increasingly important over the
last years in computational statistics and finance is daily (or higher frequency) financial data.
The package tseries provides the function get.hist.quote for obtaining historical financial
data by querying Yahoo! Finance at http://finance.yahoo.com/, an online portal quoting
data provided by Reuters. The following code queries the quotes of Lucent Technologies
starting from 2001-01-01 until 2004-09-30:

R> library(tseries)

http://finance.yahoo.com/

Journal of Statistical Software

R> LU <- get.hist.quote(instrument = "LU", start = "2001-01-01",
+ end = "2004-09-30", origin = "1970-01-01")

time series starts 2001-01-02

In the returned LU object the irregular data is stored by extending it in a regular grid and
filling the gaps with NAs. The time is stored in days starting from an origin, in this case
specified to be 1970-01-01, the origin used by the Date class. This series can be transformed
easily into an irregular "zoo" series using a "Date" index. The log-difference returns for
Lucent Technologies are depicted in Figure 4.

R> LU <- as.zoo(LU)
R> index(LU) <- as.Date(index(LU))
R> LU <- na.omit (LU)

3.3. fCalendar: Indexes of class "timeDate"

Although the methods in zoo work out of the box for many index classes, it might be necessary
for some index classes to provide c, length, ORDER and MATCH methods such that the methods
in zoo work properly. An example for such an index class which requires a bit more attention
is "timeDate" from the fCalendar package.

But after the necessary methods have been defined

R> length.timeDate <- function(x) prod(x@Dim)
R> ORDER.timeDate <- function(x, ...) order(as.POSIXct(x), ...)

21

R> MATCH.timeDate <- function(x, table, nomatch = NA, ...) match(as.P0SIXct(x),

+ as.P0SIXct(table), nomatch = NA, ...)

the class "timeDate" can be used for indexing "zoo" objects. The following example illus-
trates how z2 can be transformed to use the "timeDate" class.

R> library(fCalendar)
R> z2td <- zoo(coredata(z2), timeDate(index(z2), FinCenter = "GMT"))
R> z2td

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07
0.94306673 -0.04149429 0.59448077 -0.52575918 -0.96739776 0.95605566
2004-02-12 2004-02-16 2004-02-20 2004-02-24
-0.62733473 -0.92845336 0.56060280 0.08291711

3.4. The classes "yearmon" and "yearqtr": Roll your own index

One of the strengths of the zoo package is its independence of the index class, such that the
index can be easily customized. The previous section already explained how an existing class
("timeDate") can be used as the index if the necessary methods are created. This section

22 zoo: S3 Infrastructure for Regular and Irregular Time Series

R> plot(diff(log(LU)))

diff(log(LU))

0.1 02 03

Open
1

-0.1
1

0.1 0.2 0.30.3

High
-0.1

-0.3
|

0.4

Low
0.2

0.0
|

0.2

00 01 0.2

Close

-0.2
1

2001 2002 2003 2004

Index

Figure 4: Log-difference returns for Lucent Technologies

has a similar but slightly different focus: it describes how new index classes can be created
addressing a certain type of indexes. These classes are "yearmon" and "yearqtr" (already
contained in zoo) which provide indexes for monthly and quarterly data respectively. As the
code is virtually identical for both classes—except that one has the frequency 12 and the
other 4—we will mainly discuss "yearmon" explicitly.

Of course, monthly data can simply be stored using a numeric index just as the class "ts"

Journal of Statistical Software 23

does. The problem is that this does not have the meta-information attached that this is really
specifying monthly data which is in "yearmon" simply added by a class attribute. Hence, the
class creator is simply defined as

yearmon <- function(x) structure(floor(12*x + .0001)/12, class = "yearmon")

which is very similar to the as.yearmon coercion functions provided.

As "yearmon" data is now explicitly declared to describe monthly data, this can be exploited
for coercion to other time classes: either to coarser time scales such as "yearqtr" or to finer
time scales such as "Date", "POSIXct" or "POSIX1t" which by default associate the first day
within a month with a "yearmon" observation. Adding a format and as.character method
produces human readable character representations of "yearmon" data and Ops and MATCH
methods complete the methods needed for conveniently working with monthly data in zoo.
Note, that all of these methods are very simple and rather obvious (as can be seen in the zoo
sources), but prove very helpful in the following examples.

First, we create a regular series zr3 with "yearmon" index which leads to improved printing
compared to the regular series zr1 and zr2 from Section 2.2.

R> zr3 <- zooreg(rnorm(9), start = yearmon(2000), frequency = 12)
R> zr3

Jan 2000 Feb 2000 Mar 2000 Apr 2000 May 2000 Jun 2000
-0.30969096 0.08699142 -0.64837101 -0.62786277 -0.61932674 -0.95506154

Jul 2000 Aug 2000 Sep 2000
-1.91736406 0.38108885 1.51406511

This could be aggregated to quarterly data via
R> aggregate(zr3, as.yearqtr, mean)

2000 Q1 2000 Q2 2000 Q3
-0.2903569 -0.7340837 -0.0074067

The index can easily be transformed to "Date", the default being the first day of the month
but which can also be changed to the last day of the month.

R> as.Date(index(zr3))

(1] "2000-01-01" "2000-02-01" "2000-03-01" "2000-04-01" "2000-05-01"
(6] "2000-06-01" "2000-07-01" "2000-08-01" "2000-09-01"

R> as.Date(index(zr3), frac = 1)

(1] "2000-01-31" "2000-02-29" "2000-03-31" "2000-04-30" "2000-05-31"
(6] "2000-06-30" "2000-07-31" "2000-08-31" "2000-09-30"

24 zoo: S3 Infrastructure for Regular and Irregular Time Series

Furthermore, "yearmon" indexes can easily be coerced to "POSIXct" such that the series
could be exported as a "its" or "irts" series.

R> index(zr3) <- as.P0SIXct(index(zr3))
R> as.irts(zr3)

2000-01-01 00:00:00 GMT -0.3097
2000-02-01 00:00:00 GMT 0.08699
2000-03-01 00:00:00 GMT -0.6484
2000-04-01 00:00:00 GMT -0.6279
2000-05-01 00:00:00 GMT -0.6193
2000-06-01 00:00:00 GMT -0.9551
2000-07-01 00:00:00 GMT -1.917
2000-08-01 00:00:00 GMT 0.3811
2000-09-01 00:00:00 GMT 1.514

Again, this functionality makes switching between different time scales or index representa-
tions particularly easy and zoo provides the user with the flexibility to adjust a certain index
to his/her problem of interest.

4. Summary and outlook

The package zoo provides an S3 class and methods for indexed totally ordered observations,
such as both regular and irregular time series. Its key design goals are independence of a
particular index class and compatibility with standard generics similar to the behaviour of
the corresponding "ts" methods. This paper describes how these are implemented in zoo and
illustrates the usage of the methods for plotting, merging and binding, several mathematical
operations, extracting and replacing data and index, coercion and NA handling.

An indexed object of class "zoo" can be thought of as data plus index where the data are
essentially vectors or matrices and the index can be a vector of (in principle) arbitrary class.
For (weakly) regular "zooreg" series, a "frequency" attribute is stored in addition. There-
fore, objects of classes "ts", "its", "irts" and "timeSeries" can easily be transformed into
"zoo" objects—the reverse transformation is also possible provided that the index fulfills the
restrictions of the respective class. Hence, the "zoo" class can also be used as the basis for
other classes of indexed observations and more specific functionality can be built on top of it.
Furthermore, it bridges the gap between irregular and regular series, facilitating operations
such as NA handling compared to "ts".

Whereas a lot of effort was put into achieving independence of a particular index class, the
types of data that can be indexed with "zoo" are currently limited to vectors and matrices,
typically containing numeric values. Although, there is some limited support available for
indexed factors, one important direction for future development of zoo is to add better support
for other objects that can also naturally be indexed including specifically factors, data frames
and lists.

Journal of Statistical Software 25

Computational details

The results in this paper were obtained using R 2.1.1 with the packages zoo 1.0-0, strucchange
1.2-10, fCalendar 201.10060, tseries 0.9-27 and DAAG 0.46. R itself and all packages used
are available from CRAN at http://CRAN.R-project.org/.

Acknowledgements

We are grateful to Whit Armstrong, Matthieu Cormec, Sundar Dorai-Raj, Kurt Hornik, Roger
Koenker, Ajay Shah, and Jarek Tuszynski for ideas, testing, feedback and code snipptes that
help to improve the zoo package.

References

Heywood G (2004). its: Irregular Time Series. Portfolio & Risk Advisory Group and Com-
merzbank Securities. R package version 1.0.4.

Maindonald J, Braun WJ (2004). DAAG: Data Analysis and Graphics. R package version
0.46, URL http://www.stats.uwo.ca/DAAG/.

R Development Core Team (2005). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3, URL http:
//www.R-project.org/.

Trapletti A (2005). tseries: Time Series Analysis and Computational Finance. R package
version 0.9-25.

Wuertz D (2005). Rmetrics: An Environment and Software Collection for Teaching Financial
Engineering and Computational Finance. R package fCalendar, version 201.10059, URL
http://www.Rmetrics.org/.

Zeileis A (2004). “Implementing a Class of Structural Change Tests: An Econometric Comput-
ing Approach.” Report 7, Department of Statistics and Mathematics, Wirtschaftsuniversitét
Wien, Research Report Series. URL http://epub.wu-wien.ac.at/.

Zeileis A, Leisch F, Hornik K, Kleiber C (2002). “strucchange: An R Package for Testing
for Structural Change in Linear Regression Models.” Journal of Statistical Software, 7(2),
1-38. URL http://www.jstatsoft.org/v07/102/.

http://CRAN.R-project.org/
http://www.stats.uwo.ca/DAAG/
http://www.R-project.org/
http://www.R-project.org/
http://www.Rmetrics.org/
http://epub.wu-wien.ac.at/
http://www.jstatsoft.org/v07/i02/

26 zoo: S3 Infrastructure for Regular and Irregular Time Series

A. Reference card

Creation
zoo(x, order.by)

Creation of regular series
zoo(x, order.by, freq)

zooreg(x, start, end, freq)

Standard methods
plot
lines
print
summary
str
head, tail

Coercion
as.zoo

as. class.zoo

is.zoo

Merging and binding
merge
cbind
c, rbind
aggregate

creation of a "zoo" object from the observations x (a
vector or a matrix) and an index order.by by which the
observations are ordered.

For computations on arbitrary index classes, methods to
the following generic functions are assumed to work: com-
bining ¢ (), querying length length(), subsetting [, or-
dering ORDER() and value matching MATCH(). For pretty
printing an as.character and/or index2char method
might be helpful.

works as above but creates a "zooreg" object which in-
herits from "zoo" if the frequency freq complies with
the index order.by. An as.numeric method has to be
available for the index class.

creates a "zooreg" series with a numeric index as above
and has (almost) the same interface as ts().

plotting

adding a "zoo" series to a plot
printing

summarizing (column-wise)
displaying structure of "zoo" objects
head and tail of "zoo" objects

coercion to "zoo" is available for objects of class "ts",
"its", "irts" (plus a default method).

coercion from "zoo" to other classes. Currently available
for class in "matrix", "vector", "data.frame", "list",
"irts", "its" and "ts".

querying wether an object is of class "zoo"

union, intersection, left join, right join along indexes
column binding along the intersection of the index
combining/row binding (indexes may not overlap)
compute summary statistics along a coarser grid of
indexes

Journal of Statistical Software 27

Mathematical operations

Ops
t
cumsum

group generic functions performed along the intersection of indexes
transposing (coerces to "matrix" before)

compute (columnwise) cumulative quantities: sums cumsum(),
products cumprod (), maximum cummax (), minimum cummin().

Extracting and replacing data and index

index, time
index<-, time<-
coredata, coredata<-
lag

diff

start, end

window, window<-

NA handling
na.omit
na.contiguous
na.locf
na.approx

Rolling functions

rapply
rollmean

extract the index of a series

replace the index of a series

extract and replace the data associated with a "zoo" object
lagged observations

arithmetic and geometric differences

querying start and end of a series

subsetting of "zoo" objects using their index

omit NAs

compute longest sequence of non-NA observations
impute NAs by carrying forward the last observation
impute NAs by interpolation

apply a function to rolling margin of an array

more efficient functions for computing the rolling mean, median
and maximum are rollmean(), rollmedian() and rollmax(),
respectively

Methods for regular series

is.regular

frequency, deltat

cycle

Affiliation:

Achim Zeileis

checks whether a series is weakly (or strictly if strict = TRUE)
regular

extracts the frequency or its reciprocal value respectively from a
series, for "zoo" series the functions try to determine the regularity
and frequency in a data-driven way

gives the position in the cycle of a regular series

Wirtschaftsuniversitit Wien

Augasse 2-6
A-1090 Wien, Austria

E-mail: Achim.Zeileis@wu-wien.ac.at
URL: http://www.ci.tuwien.ac.at/ zeileis/

Journal of Statistical Software
May 2005, Volume 14, Issue 6.

Submitted: 2005-04-27
Accepted: 2005-05-21

http://www. jstatsoft.org/

mailto:Achim.Zeileis@wu-wien.ac.at
http://www.ci.tuwien.ac.at/~zeileis/
http://www.jstatsoft.org/

	Introduction
	The class "zoo" and its methods
	Creation of "zoo" objects
	Creation of "zooreg" objects
	Plotting
	Merging and binding
	Mathematical operations
	Extracting and replacing the data and the index
	Coercion to and from "zoo"
	NA handling
	Rolling functions

	Combining zoo with other packages
	strucchange: Empirical fluctuation processes
	tseries: Historical financial data
	fCalendar: Indexes of class "timeDate"
	The classes "yearmon" and "yearqtr": Roll your own index

	Summary and outlook
	Reference card

